BS in Electrical Engineering (393550) MAP Sheet
Engineering, Electrical and Computer Engineering
For students entering the degree program during the 2022-2023 curricular year.

University Core and Graduation Requirements

University Core Requirements:

Requirements
#Classes Hours Classes
Religion Cornerstones
Teachings and Doctrine of The Book of Mormon 12.0 REL A 275
Jesus Christ and the Everlasting Gospel 12.0 REL A 250
Foundations of the Restoration 12.0 REL C 225
The Eternal Family 12.0 REL C 200
The Individual and Society
American Heritage 1-2 3-6.0 from approved list
Global and Cultural Awareness 1 3.0 from approved list ‡
Skills
First Year Writing 1 3.0 from approved list
Advanced Written and Oral Communications 13.0 WRTG 312* or 316*
Quantitative Reasoning 14.0 MATH 112* or 113*
Languages of Learning (Math or Language) 14.0 MATH 112* or 113*
Arts, Letters, and Sciences
Civilization 1 3.0 from approved list ‡
Civilization 2 1 3.0 from approved list ‡
Arts 1 3.0 from approved list ‡
Letters 1 3.0 from approved list ‡
Physical Science 27.0 CHEM 105* or 111* and PHSCS 121*
Social Science 1 3.0 from approved list ‡
Core Enrichment: Electives
Religion Electives 3-4.0 from approved list
Open Electives 3-4.0 from approved list

FOR GE QUESTIONS CONTACT THE ADVISEMENT CENTER — FOR PROGRAM QUESTIONS SEE YOUR DEPARTMENT ADVISOR

*THESE CLASSES FILL BOTH UNIVERSITY CORE AND PROGRAM REQUIREMENTS (16–17 hours overlap)

‡REDUCTION OF TOTAL CREDITS IS RECOMMENDED by choosing a Civilization 2 course that also double counts for the Arts requirement (if a separate Letters course is taken) or the Letters requirement (if a separate Arts course is taken). GCA might also double count with one of several University Core requirements. See the University Core list for specifics (core.byu.edu).

Graduation Requirements:
Minimum residence hours required 30.0
Minimum hours needed to graduate 120.0
Suggested Sequence of Courses
Freshman Year
1st Semester
First-year Writing or American Heritage 3.0
MATH 1124.0
CHEM 1054.0
CS 1423.0
EC EN 1910.5
Religion Cornerstone course 2.0
Total Hours 16.5
2nd Semester
C S 2353.0
MATH 1134.0
PHSCS 1213.0
First-year Writing or American Heritage 3.0
Religion Cornerstone course 2.0
Total Hours 15.0
Sophomore Year
3rd Semester
EC EN 2203.0
MATH 213 + 2156.0
PHSCS 2203.0
University Core requirement 3.0
University Core requirement 3.0
Religion Cornerstone course 2.0
Total Hours 17.0
4th Semester
EC EN 2404.0
MATH 3143.0
MATH 3343.0
University Core requirement 3.0
Religion elective 2.0
Total Hours 15.0
Junior Year
5th Semester
EC EN 3304.0
EC EN 3404.0
EC EN 3804.0
EC EN 3910.5
Religion Cornerstone course 2.0
Total Hours 14.5
6th Semester
EC EN 3604.0
STAT 2013.0
EC EN 3903.0
University Core requirement 3.0
Religion elective 2.0
Total Hours 15.0
Senior Year
7th Semester
EC En 4753.0
Technical elective 4.0
Technical elective 4.0
Technical elective 2.0
University Core requirement 3.0
Total Hours 16.0
8th Semester
EC EN 4763.0
Technical elective 4.0
Technical elective 4.0
WRTG 312 or 316.3.0
Religion elective 2.0
Total Hours 16.0

*Actual course sequences should be adapted to individual needs. For example, students with AP credits in Math, Physics, or Computer Science will already have credit for some initial courses. Many students find it beneficial to attend one or more spring or summer terms. On average, students take about nine semesters to graduate in this program.

Note: Students are encouraged to complete an average of 16 credit hours each semester or 32 credit hours each year, which could include spring and/or summer terms. Taking fewer credits substantially increases the cost and the number of semesters to graduate.

BS in Electrical Engineering (393550) 2022-2023 Program Requirements (90 Credit Hours)

requirement 1 Complete 2 options
option 1.1 Complete 1 course
C S 111 - Introduction to Computer Science 3.0
C S 142 - Introduction to Computer Programming 3.0
option 1.2 Complete 19 courses
C S 235 - Data Structures and Algorithms 3.0
EC EN 191 - New Student Seminar 0.5
EC EN 220 - Fundamentals of Digital Systems 3.0
EC EN 240 - Circuit Analysis and Laboratory 4.0
EC EN 330 - Introduction to Embedded System Programming 4.0
EC EN 340 - Electronic Circuit Design 1 4.0
EC EN 360 - Electromagnetic Fields and Waves 4.0
EC EN 380 - Signals and Systems 4.0
EC EN 390 - Junior Team Design Project 3.0
EC EN 391 - Junior Seminar 0.5
EC EN 475 - Capstone Design 1 3.0
EC EN 476 - Capstone Design 2 3.0
MATH 112 - Calculus 1 4.0
MATH 113 - Calculus 2 4.0
MATH 314 - Calculus of Several Variables 3.0
MATH 334 - Ordinary Differential Equations 3.0
PHSCS 121 - Introduction to Newtonian Mechanics 3.0
PHSCS 220 - Introduction to Electricity and Magnetism 3.0
STAT 201 - Statistics for Engineers and Scientists 3.0

requirement 2 Complete 1 option
option 2.1 Complete 1 course
MATH 313 - (Not currently offered)
option 2.2 Complete 2 courses
MATH 213 - Elementary Linear Algebra 2.0
MATH 215 - Computational Linear Algebra 1.0

requirement 3 Complete 2 options
option 3.1 Complete 1 course
CHEM 105 - General College Chemistry 1 with Lab (Integrated) 4.0
CHEM 111 - Principles of Chemistry 1 4.0
option 3.2 Complete 1 course
Note: WRTG 312 recommended.
WRTG 312 - Persuasive Writing 3.0
WRTG 316 - Technical Communication 3.0
Complete at least 18 credit hours of TECHNICAL ELECTIVES from the following two requirements.
requirement 4 Complete 16.0 hours from the following course(s)
Technical Electives:
EC EN 323 - Computer Organization 4.0
EC EN 445 - Introduction to Mixed-Signal VLSI 4.0
EC EN 446 - Power Electronics 4.0
EC EN 450 - Introduction to Semiconductor Devices 3.0
EC EN 452 - Experiments in Integrated Circuit Development 1.0
EC EN 462 - Electromagnetic Radiation and Propagation 2.0
EC EN 464 - Wireless Communication Circuits 2.0
EC EN 466 - Introduction to Optical Engineering 2.0
EC EN 483 - (EC En-Me En 431) Design of Control Systems 4.0
EC EN 485 - Introduction to Digital Communication Theory 4.0
EC EN 487 - Introduction to Discrete-Time Signal Processing 4.0
requirement 5 Complete 2.0 hours from the following course(s)
Technical Electives. (Note: EC En courses will not double count.) Other engineering, mathematics, physics, or computer science courses as specified or approved by the EC En department are also acceptable.
C S 236 - Discrete Structures 3.0
C S 240 - Advanced Programming Concepts 4.0
C S 340 - Software Design 3.0
C S 345 - Operating Systems Design 3.0
C S 428 - Software Engineering 3.0
C S 431 - Algorithmic Languages and Compilers 3.0
C S 452 - Database Modeling Concepts 3.0
C S 455 - Computer Graphics 3.0
C S 456 - Introduction to User Interface Software 3.0
C S 460 - Computer Communications and Networking 3.0
C S 462 - Large-Scale Distributed System Design 3.0
C S 465 - Computer Security 3.0
C S 470 - Introduction to Artificial Intelligence 3.0
C S 472 - Introduction to Machine Learning 3.0
C S 474 - Introduction to Deep Learning 3.0
EC EN 323 - Computer Organization 4.0
EC EN 424 - Computer Systems 4.0
EC EN 425 - Real-Time Operating Systems 4.0
EC EN 426 - Computer Networks 4.0
EC EN 427 - Embedded Systems 4.0
EC EN 445 - Introduction to Mixed-Signal VLSI 4.0
EC EN 446 - Power Electronics 4.0
EC EN 450 - Introduction to Semiconductor Devices 3.0
EC EN 452 - Experiments in Integrated Circuit Development 1.0
EC EN 462 - Electromagnetic Radiation and Propagation 2.0
EC EN 464 - Wireless Communication Circuits 2.0
EC EN 466 - Introduction to Optical Engineering 2.0
EC EN 483 - (EC En-Me En 431) Design of Control Systems 4.0
EC EN 485 - Introduction to Digital Communication Theory 4.0
Complete the department exit interview.

THE DISCIPLINE:

Electrical and Computer Engineering is one of the most exciting, diverse, and forward-looking disciplines offered at the university. Contemporary society is in the midst of an information revolution, created in large part from the fruits of electrical and computer engineering. Electrical and computer engineers have been primary contributors to the astonishing developments in communication, computer, and network technology. They have designed devices and systems that have a significant impact on manufacturing, medicine, transportation, and environmental monitoring. Smart phones, tablets, digital cameras, high definition television, solar power, microprocessors, lasers, unmanned air vehicles, medical imaging systems, and autonomous robotic systems are all examples of devices and systems designed by electrical and computer engineers. Innovations that flow out of electrical and computer engineering sustain the national economy and improve the quality of life for people throughout the world. In the future, society will look to electrical and computer engineers to address grand challenges ranging from sustainable and efficient energy to health care technologies and global communications networks.

The Department of Electrical and Computer Engineering at Brigham Young University offers accredited degrees in Electrical Engineering and Computer Engineering.

Electrical Engineering focuses on microelectronics, electromagnetics, electronic circuits, wireless communications, signal processing, biomedical applications, photonics, and controls. Computer Engineering focuses on the design of digital computing devices and systems and involves hardware and software, operating systems, digital logic, real-time systems, and computer vision. Both programs combine fundamental principles with hands-on learning, including an innovative Junior Core experience that integrates classroom knowledge with project-based learning.

CO-OP and INTERNSHIP EXPERIENCES:
Optional co-op and internship experiences with engineering firms throughout the USA are available. These experiences may extend over one semester plus the spring/summer terms, for a total of eight months.

PROFESSIONAL AND HONOR SOCIETIES:
The student chapter of the Institute of Electrical and Electronic Engineers is the professional organization; Eta Kappa Nu is the electrical and computer engineering honor society; and Tau Beta Pi is the honor society for all engineering fields.

CAREERS:
Electrical and computer engineers are among the most actively recruited students graduating from a four-year program. Baccalaureate engineers typically start their careers as members of project teams with one or more of the following responsibilities: designing digital, analog, or opto-electronic circuits; creating or testing applicationspecific software; testing components or systems; or providing technical support for sales. Later on, many engineers find themselves pursuing managerial careers, starting their own companies, or even managing entrepreneurial funds. Top graduates are also well received by medical schools, law schools, and professional and management programs.

The Electrical Engineering baccalaureate program is accredited by the Engineering Accreditation Commission of ABET, Inc., http://www. abet.org.

MAP DISCLAIMER
While every reasonable effort is made to ensure accuracy, there are some student populations that could have exceptions to listed requirements. Please refer to the university catalog and your college advisement center/department for complete guidelines.

DEPARTMENT INFORMATION

Electrical and Computer Engineering Department
Brigham Young University
460/450 Engineering Building
Provo, UT 84602
Telephone: 801-422-4012

ADVISEMENT CENTER INFORMATION

Engineering Advisement Center
Brigham Young University
246 Engineering Building
Provo, UT 84602
Telephone: 801-422-4325
Email: engineering_advisement@byu.edu